Regulation of adenovirus alternative RNA splicing at the level of commitment complex formation.

نویسندگان

  • J P Kreivi
  • G Akusjärvi
چکیده

The adenovirus late region 1 (L1) represents an example of an alternatively spliced gene where one 5' splice site is spliced to two alternative 3' splice sites, to produce two mRNAs; the 52,55K and IIIa mRNAs, respectively. Accumulation of the L1 mRNAs is temporally regulated during the infectious cycle. Thus, the proximal 3' splice site (52,55K mRNA) is used at all times during the infectious cycle whereas the distal 3' splice site (IIIa mRNA) is used exclusively late in infection. Here we show that in vitro splicing extracts prepared from late adenovirus-infected cells reproduces the virus-induced temporal shift from proximal to distal 3' splice site selection in L1 pre-mRNA splicing. Two stable intermediates in spliceosome assembly have been identified; the commitment complex and the pre-spliceosome (or A complex). We show that the transition in splice site activity in L1 alternative splicing results from an increase in the efficiency of commitment complex formation using the distal 3' splice site in extracts prepared from late virus-infected cells combined with a reduction of the efficiency of proximal 3' splice site splicing. The increase in commitment activity on the distal 3' splice site is paralleled by a virus-induced increase in A complex formation on the distal 3' splice site. Importantly, the virus-induced shift from proximal to distal L1 3' splice site usage does not require cis competition between the 52,55K and the IIIa 3' splice sites, but rather results from the intrinsic property of the two 3' splice sites which make them respond differently to factors in extracts prepared from virus-infected cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of essential splicing factor ASF/SF2 blocks the temporal shift in adenovirus pre-mRNA splicing and reduces virus progeny formation.

Expression of cytoplasmic mRNA from most adenovirus transcription units is subjected to a temporal regulation at the level of alternative pre-mRNA splicing. The general tendency is that splice site selection changes from proximal to distal late after infection. Interestingly, ASF/SF2, which is a prototypical member of the SR family of splicing factors, has the opposite effect on splice site sel...

متن کامل

A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA.

Female-specific splicing of Drosophila doublesex (dsx) pre-mRNA is regulated by the products of the transformer (tra) and transformer 2 (tra2) genes. In this paper we show that Tra and Tra2 act by recruiting general splicing factors to a regulatory element located downstream of a female-specific 3' splice site. Remarkably, Tra, Tra2, and members of the serine/arginine-rich (SR) family of genera...

متن کامل

Commitment to splice site pairing coincides with A complex formation.

Differential recognition of exons by the spliceosome regulates gene expression and exponentially increases the complexity of metazoan proteomes. After definition of the exons, the spliceosome is activated by a series of sequential structural rearrangements. Formation of the first ATP-independent spliceosomal complex commits the pre-mRNA to the general splicing pathway. However, the time at whic...

متن کامل

Regulation of Human Adenovirus Alternative RNA Splicing by the Adenoviral L4-33K and L4-22K Proteins

Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing f...

متن کامل

Two Cellular Protein Kinases, DNA-PK and PKA, Phosphorylate the Adenoviral L4-33K Protein and Have Opposite Effects on L1 Alternative RNA Splicing

Accumulation of the complex set of alternatively processed mRNA from the adenovirus major late transcription unit (MLTU) is subjected to a temporal regulation involving both changes in poly (A) site choice and alternative 3' splice site usage. We have previously shown that the adenovirus L4-33K protein functions as an alternative splicing factor involved in activating the shift from L1-52,55K t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 22 3  شماره 

صفحات  -

تاریخ انتشار 1994